Recurrent Nets that Time and Count

Felix A. Gers Jiirgen Schmidhuber

felix@idsia.ch juergen@idsia.ch

IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland, www.idsia.ch

Abstract

The size of the time intervals between events conveys information essential for numerous sequential
tasks such as motor control and rhythm detection. While Hidden Markov Models tend to ignore this
information, recurrent neural networks (RNNs) can in principle learn to make use of it. We focus on
Long Short-Term Memory (LSTM) because it usually outperforms other RNNs. Surprisingly, LSTM
augmented by “peephole connections” from its internal cells to its multiplicative gates can learn the fine
distinction between sequences of spikes separated by either 50 or 49 discrete time steps, without the help
of any short training exemplars. Without external resets or teacher forcing or loss of performance on
tasks reported earlier, our LSTM variant also learns to generate very stable sequences of highly nonlinear,
precisely timed spikes. This makes LSTM a promising approach for real-world tasks that require to time
and count.

1 Introduction

Humans quickly learn to recognize pattern sequences whose defining aspects are embodied by the time
intervals between sub-patterns, such as rhythms. And not only drummers are able to generate precisely
timed sequences of motor commands. This motivates us to study artificial systems that learn to separate or
generate patterns whose information is partially conveyed by the delays between events.

Widely used approaches to sequence processing, such as Hidden Markov Models (HMMs), typically
discard such information — in HMM-based speech recognition we do not care for the difference between slow
and fast versions of a given spoken word. Recurrent neural networks (RNNs), however, can in principle learn
to use it. In fact, RNNs are suited for tasks no other current sequence learning method can solve. Traditional
discrete symbolic grammar learning algorithms may faster learn grammatical structure of discrete, noise-free
event sequences, but cannot deal with noise or with sequences of real-valued inputs. HMMs are well-suited
for noisy inputs but limited to discrete state spaces. Typical RNNs, however, perform gradient descent in
a very general space of potentially noise-resistant algorithms using distributed, continuous-valued internal
states to map real-valued input sequences to real-valued output sequences (Pearlmutter, 1995).

Certain smoothly oscillating outputs, without long time lags between significant output changes, are
learnable by RNNs, either by teacher-forcing (Williams & Zipser, 1989), or by clamping network inputs first
to the target and then to the network output (Doya & Yoshizawa, 1989; Tsung & Cottrell, 1995). Here
we will study more difficult problems of periodic function approximation (PFA) with long time lags. They
require the network to learn to estimate the size of time intervals, and to count discrete time steps, possibly
in absence of any short time lags between relevant events, which could facilitate learning. This is extremely
difficult for traditional RNNs (Wiles & Elman, 1995; Rodriguez & Wiles, 1998).

Previous experiments with Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber, 1997) al-
ready demonstrated LSTM’s superiority over traditional RNNs, especially in presence of long time lags
(Hochreiter & Schmidhuber, 1997; Gers, Schmidhuber, & Cummins, 1999). But they did not require to
time and count. For instance, some of the previous tasks require to predict inputs depending on events that
occurred 50 discrete time steps ago but not on anything that happened during the most recent 49 steps.
Right before the critical prediction, however, there is a helpful “time marker” input informing the network
that the next time step will be crucial — the network does not have to learn to count to 50, it just has to
learn to store relevant information for 50 steps and use it once the time marker is observed.

The tasks in the present paper, however, do not involve time markers at all. Instead they require to
time and count precisely across long time lags. We will first introduce novel “peephole connections” to

cell output yclt\

out
output garting SC yout K y @% tout

output gate

peephole-connection

peephole-connections

ety Y e 0
and forgetting c state
forget gate)
input gating g ym % ?\ net

input squashing g mput gate
cell input/ W netc

Figure 1: LSTM memory block with one cell, peephole connections connect s. to the gates.

overcome a weakness in LSTM’s connection scheme. Then we show that the resulting LSTM extension
can indeed solve such tasks, by learning to translate very rare changes of the target signal into appropriate
sequence-processing or sequence-generating algorithms embodied in LSTM’s recurrent connections.

2 Extending LSTM with “Peephole Connections”

We are building on LSTM with forget gates (Gers et al., 1999), simply called “LSTM” in what follows.
LSTM. The basic unit of an LSTM network is the memory block containing one or more memory cells
and three adaptive, multiplicative gating units shared by all cells in the block. Each memory cell has at its
core a recurrently self-connected linear unit called the “Constant Error Carousel” (CEC) whose activation
is called the cell state. The CECs enforce constant error flow and overcome a fundamental problem plaguing
previous RNNs: they prevent error signals from decaying quickly as they “get propagated back in time.”
The adaptive gates control input and output to the cells (input and output gate) and learn to reset the cell’s
state once its contents are out of date (forget gate). All errors are cut off once they leak out of a memory
cell or gate, although they do serve to change the incoming weights. The effect is that the CECs are the
only part of the system through which errors can flow back forever, while gates etc. learn the nonlinear
aspects of sequence processing. This makes LSTM’s updates efficient without significantly affecting learning
power: LSTM’s learning algorithm is local in space and time; its computational complexity per time step
and weight is O(1). The CECs permit LSTM to bridge huge time lags (1000 discrete time steps and more)
between relevant events, while traditional RNNs with more complex update algorithms already fail to learn
in presence of 10 step time lags although they require more expensive updates.

Limitations of LSTM. Each gate receives connections from the input units and the outputs of all cells.
But there is no direct connection from the CEC it is supposed to control. All it can observe directly is
the cell output, which is close to zero as long as the output gate is closed. The resulting lack of essential
information may harm network performance, especially in case of the tasks we are going to study here.
Peephole connections. Our simple remedy is to add weighted “peephole” connections from the CEC to
the gates of the same memory block. See Figure 1. The gates learn to shield the CEC from unwanted inputs
(forward pass) or unwanted error signals (backward pass). To keep the shield intact, during learning no
error signals are propagated back from gates via peephole connections to CEC. Peephole connections are
treated almost like regular connections to gates (e.g., from the input) except for update timing. All units
(cells, gates) within a layer are updated in arbitrary order, which is fine since the only source of recurrent
connections is the cell output y¢. Peephole connections from within the cell (or recurrent connections from
gates) require a refinement of LSTM’s update scheme.

Updates for peephole LSTM. Each memory cell component should be updated based on the most recent
activations or states of connected sources. For each discrete time step we use a 2 phase update scheme (in
case of recurrent connections from gates, phase 1 should be subdivided into a,b,c):

1. (a) Input gate activation y*, (b) forget gate activation y%, (c) cell input and cell state s,

out

2. output gate activation y°“* and cell output y°.

So the output gate is updated after cell state s., seeing via its peephole connection the actual value of s.(t)
(already affected by forget gate and recent input), and possibly the current input and forget gate activations.

3 Forward Pass

Before specifying the equations for the extended LSTM model, we introduce a minor simplification unrelated
to the central idea of this paper. Traditional LSTM memory cells incorporate an input squashing function
g and an output squashing function (called h in earlier LSTM publications). We remove the latter due to
lack of empirical evidence that it is really needed.

The cell output, y°, is calculated based on the current cell state s, and three sources of input: net. is
input to the cell itself while net;,, net, and net,,+ are inputs to the input, forget and output gates. We
consider discrete time steps t = 0,1,2,.... A single step involves the update of all units (forward pass) and
the computation of error signals for all weights (backward pass). Throughout this paper j indexes memory
blocks; v indexes memory cells in block j (with S; cells), such that ¢j denotes the v-th cell of the j-th
memory block; wy,, is the weight on the connection from unit m to unit I. Index m ranges over all source
units, as specified by the network topology and m; additionally includes the cells of the j-th memory block:
mj = {m,cj} with v=1,...,5; . For the gates, f; , | € {,in,c} is a logistic sigmoid (with range [0, 1]).
Step 1a,1b. The input gate activation y'™ and the forget gate activation y¥ are computed as follows:

netlj (t) = Zwl]‘mJ‘ y;nJ ; ylj (t) = flj (netlj (t)) with [€ {go,m} . (1)

The peephole connections for the input gate and the forget gate are incorporated in equation 1 by including
the CECs of memory block j as source units: y;»' = yp” := {y™(t—1), sex(t—1)} with v =1,...,5;.
Step 1lc. The state of memory cell s.(t) is calculated as follows:

neter(t) = S werm Y™ (t=1) , ser(B) = Y% (1) ser (t=1) +y™ () glnetes () , 52 0)=0 . (2)

Step 2. The output gate activation y°“¢ is computed as follows:

netoutj (t) = Z woutjm]- y;’:ﬁ) youtj (t) = foutj (netout]‘ (t)) . (3)
mj

To incorporate the peephole connections for the output gate in equation 3, y..;, takes into account the CECs
of memory block j with the cell states s.(t), actualized in step 1: y..;; = {y™(t-1), Sy (1)} with v=1,...,5;.

The cell output y¢ is computed as follows: y€ (t) = y°“% (t) sev(t) -

4 Gradient-Based Backward Pass

The revised update scheme (see Section 2) for memory blocks allows for treating peephole connections like
regular connections. This provokes only minor changes in the backward pass (Gers et al., 1999), we will not
re-derive it here. Like LSTM but unlike BPTT and RTRL, peephole LSTM is local in space and time. The
increase in complexity due to peephole connections is small: 3 weights per cell.

5 Experiments

We study LSTM’s performance on PFA tasks that require to time and count and are unsolvable by traditional
RNNS. We compare to peephole LSTM, analyze the solutions, or explain why none was found.

Spike timing (ST) (Section 5.2). This PFA task requires to reproduce spike trains with constant time
delays. Unlike previously studied PFA tasks (Williams & Zipser, 1989; Doya & Yoshizawa, 1989; Tsung

& Cottrell, 1995) it is highly nonlinear and involves long time lags between significant output changes.
Conventional RNNs cannot learn those. Previous work also did not focus on stability issues, but we demand
that the approximation is stable for as many as 1000 successive periods. We systematically investigate the
effect of minimal time lag on task difficulty. Then we study a variant of this task which requires the spike
time delays to reflect the magnitude of an input signal that may change after every spike (IST task).
Counting spike time delays (CSD) (Section 5.3). The tasks above already require the network to learn
the size of time intervals by implicitly counting time steps. Here we study more explicit counting tasks. Can
LSTM learn the difference between almost identical pattern sequences that differ by very similar time delays
(either n or n + 1) between pattern changes? Can LSTM also do this in presence of never-ending, continual
input streams? How does the difficulty of this problem depend on n ?

The continual CSD task is obtained by exchanging inputs and targets in the IST task above: the network
has to learn to count time delays between sharp spikes (non-continual version: NCSD task).

5.1 Network Topology and Experimental Parameters

We found that comparatively small LSTM nets already can solve the tasks above. One single input unit
(used only for tasks where there is input indeed) is fully connected to the hidden layer consisting of a single
memory block with 1 cell and 3 gates. The cell output is connected to the cell input, to all gates, and to a
single output unit. All gates, the cell itself and the output unit are biased. The bias weights to input gate,
forget gate and output gate are initialized with 0.0, —2.0 and +2.0, respectively. Precise bias initialization
is not critical though—other values work just as well. All other weights are initialized randomly in the
range [—0.1,0.1]. In absence of the 3 peephole connections there are 14 adjustable weights (9 “unit-to-unit”
connections and 5 bias connections). The cell’s input squashing function g is the identity function. The
squashing function of the output unit is a logic sigmoid with range [0, 1].

Our networks process continual streams of (here 1-dimensional) input and target vectors. Only at stream
beginnings the network is reset. It always must learn to predict the targets ¢x(t), producing a stream of
output values (predictions) yi(t). A prediction is considered correct if the absolute output error is below
0.49. Streams are stopped as soon as the network makes an incorrect prediction or after a given maximal
number of successive periods: 100 for training streams, 1000 for test streams (with F' predictions per period,
where F' is the task’s frequency parameter).

Learning and testing alternate: after each training stream, we freeze the weights and output a test stream.
Our performance measure is the achieved test stream size: 1000 periods correspond to a “perfect” solution.
Training is stopped once a task is learned or after a maximal number of 10® training streams. Weight changes
are made after each target presentation. At the beginning of each training stream, the learning rate « is
initialized with 10~® and then adjusted by applying the momentum algorithm (Plaut, Nowlan, & Hinton,
1986) with momentum parameter 0.999 for the ST and IST tasks, 0.99 for the NCSD task and 0.9999 for
the CSD task.

For tasks IST and CSD, the stochastic input streams are generated online. A perfect solution correctly
processes 10 test streams, to make sure the network provides stable performance independent of the stream
beginning, which we found to be critical. All results are averages over 10 independently trained networks.

5.2 Spike Timing

The target is a spike train, represented by a series of 0s and 1s, where a 1 indicates a spike. Spikes occur at
times T'(n) with n =0,1,...: T(0) := F +I(0) , T(n+1) :=T(n) + F + I(n), where F is the minimal time
delay between spikes and I the integer network input (only for the IST task), randomly reset at times T'(n).
Results. The ST and IST task could not be learned by networks without peephole connections (only results
with peephole LSTM are reported). The results for different spike time delays F' (see Table 1) suggest that
the necessary training time depends exponentially on the time delay of the task. A qualitative explanation
is: larger time delays necessitate finer tuning of the weights, which demands more training. The network
output during test runs with network solutions for the ST task with =10 is shown in the top row of Figure
2. Peephole LSTM also solves the IST task with =10 and a network input I in [0,1] or [0, 1,2] (Table 2).
Analysis. Figure 2 shows test runs with network solutions for the ST task. The output gates only opens
at the onset of a spike and re-closes after the spike. Hence, during a spike, the output of the cell is equal to
its state (see middle row of Figure 2). The opening of the output gates is triggered by the cell state s.. It

Tables: Column “T”: Task. Column “F”: Minimal spike time delay. Column “I € ”: Set of input symbols. Column
“Sol.”: Percentage of perfect solutions. Column “Train. [10%]”: Average number of training streams.

Peephole LSTM LSTM Peephole LSTM
T | F| Ie | Sol | Train. [10°] T | F| Ie | Sol | Train. [10°] || Sol. | Train. [10°]
10] - [[100] 4ix4 10] - [100] B3201£28 |[100| 25028
20| - |[100] 67%8 NC [20] - || 100 | 1464E195 | 100 | 1526 £ 206
ST [30] - || 80 | 845182 || SD [30| - | 100 | 35043 £4401 || 80 | 25770 £ 4183
0] - | 100 | 1152 L 101 0] - 0 | 75066 £9116 || 70 | 51373 £ 5500
50 [- | 100 | 2538 £343 50| - 0 - 10 64970
I |10 [0,1] 50 1647 £ 46 C (10| [0,1] 10 177 20 549 + 235
ST [10 [[0,1,2] || 30 | 954£393 || SD [10|[0,L,2]|| 20 | 585£275 || 60 | 196 £53

Table 1: Results of ST and IST tasks. Table 2: Results of NCSD and CSD tasks.

starts to opens when the input from the peephole connection outweighs the bias. The opening self-reinforces
via the connection from the cell output, which produces the high nonlinearity necessary for the spike. In the
IST task network input is translated into a scaling factor for the growth of s..

5.3 Counting Spike Time Delays

Network input and target of the IST task are reversed. For the non-continual version of the task (NCSD) a
stream consists of a single period. A perfect solution correctly processes all possible input test streams.
Results. Table 2 reports the results for the NCSD task with I € [0,1] for different time delays F. The
results suggest that the difficulty of the task depends exponentially on the time delay F', as for the ST task
(see Section 5.2). Peephole LSTM outperforms LSTM. Also the continual CSD task for F'=10 with I € [0, 1]
or I €]0,1,2], was solved with and without peephole connections (Table 2).

Analysis. LSTM learned to count in two principled ways. The first is to slightly increase the cell contents
sc at each time step, so that the elapsed time can be read off the value of s.. This kind of solution is
shown on the right hand side of Figure 3 (the state reset performed by the forget gate is only essential
for continual online prediction across many periods). The second counting method is to establish internal
oscillators (oscillating cell states) and derive the elapsed time from their phases. Both kinds of solutions
could be learned with and without peephole connections, as it is never necessary here to close the output
gate.

6 Conclusion

Previous work demonstrated LSTM’s superiority over other RNNs in presence of significant time lags between
relevant events but did not require the network to extract relevant information conveyed by the size of the
time lags. Here we show that LSTM can solve such tasks, too, by learning to time and count and act in a
highly nonlinear fashion, provided we extend LSTM cells by peephole connections that allow them to inspect
their current internal states. It is remarkable that LSTM can learn precise and stable timing algorithms
without teacher forcing and despite the very uninformative target signals which change very rarely. This
makes LSTM a promising approach for numerous real-world tasks that require to learn to measure the size
of time intervals. In particular, we intend to apply LSTM to music and rhythm classification.
Acknowledgment. This work was supported by SNF grant 2100-49’144.96 “LSTM.”

Reference

Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time backpropagation learning. Neural
Networks, 2(5), 375-385.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. In Proc.
ICANN’99, Int. Conf. on Artificial Neural Networks, Vol. 2, pp. 850-855 Edinburgh, Scotland. IEE, London.
Extended version submitted to Neural Computation.

Test run with network solutions: Top: Target values t; and network output yx. Middle: Cell state s. and
cell output y.. Bottom: Activations of the gates (input gate yirn, forget gate y, and output gate yout)-

3
1 | e o T B -
k
. =T
ki 2 Feqp e 1
y K o
k
1Y
0 i
0
0 4
| 9) &
-4 i
SC+ 0 SC+
yc$ yc# 1
1 Ao A ~: ‘,Ar‘- X f,A-*' A
509%0]
°
yln o O
yout_,_ i
y(p--A-- {] L
O B
0 10 20 30 0 10 20 30
Time Time
Figure 2: Peephole LSTM, ST task: F=10. Figure 3: Peephole LSTM, CSD task: F=10, I€[0,1,2].

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions
on Neural Networks, 6(5), 1212-1228.

Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Experiments on learning back propagation. Tech. rep. CMU-
(CS-86-126, Carnegie—Mellon University, Pittsburgh, PA.

Rodriguez, P.; & Wiles, J. (1998). Recurrent neural networks can learn to implement symbol-sensitive counting. In
Advances in Neural Information Processing Systems, Vol. 10, pp- 87-93. The MIT Press.

Tsung, F.-S., & Cottrell, G. W. (1995). Phase-space learning. In Advances in Neural Information Processing Systems,
Vol. 7, pp. 481-488. The MIT Press.

Wiles, J., & Elman, J. (1995). Learning to count without a counter: A case study of dynamics and activation
landscapes in recurrent networks. In In Proceedings of the Seventeenth Annual Conference of the Cognitive
Science Society, pp. pages 482 — 487 Cambridge, MA. MIT Press.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent net works. Neural
Computation, 1(2), 270-280.

