
Under review as a conference paper at ICLR 2015

LEARNING STOCHASTIC RECURRENT NETWORKS

Justin Bayer
Lehrstuhl für Echtzeitsysteme und Robotik
Fakultät für Informatik
Technische Universität München
bayer.justin@googlemail.com

Christian Osendorfer
Institut für Regelungstechnik
Leibniz Universität Hannover
christian.osendorfer@rt.uni-hannover.de

ABSTRACT

Leveraging advances in variational inference, we propose to enhance recurrent
neural networks with latent variables, resulting in Stochastic Recurrent Networks
(STORNs). The model i) can be trained with stochastic gradient methods, ii)
allows structured and multi-modal conditionals at each time step, iii) features a
reliable estimator of the marginal likelihood and iv) is a generalisation of deter-
ministic recurrent neural networks. We evaluate the method on four polyphonic
musical data sets and motion capture data.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) are flexible and powerful tools for modeling sequences. While
only bearing marginal existence in the 1990’s, recent successes in real world applications (Graves,
2013; Graves et al., 2013; Sutskever et al., 2014; Graves et al., 2008; Cho et al., 2014) have resurged
interest. This is partially due to architectural enhancements (Hochreiter & Schmidhuber, 1997),
new optimisation findings (Martens & Sutskever, 2011; Sutskever et al., 2013; Bengio et al., 2012)
and the increased computional power available to researchers. RNNs can be employed for a wide
range of tasks as they inherit their flexibility from plain neural networks. This includes universal
approximation capabilities, since RNNs are capable of approximating any measureable sequence
to sequence mapping and have been shown to be Turing complete (Hammer, 2000; Siegelmann &
Sontag, 1991).

One typical application is to let an RNN model a probability distribution over sequences, i.e.
p(x1:T). This is done by writing the distribution in cascade form,

p(x1:T) =

T−1∏
t=0

p(xt+1|x1:t),

where x1:0 = ∅. Each p(xt+1|x1:t) is then represented by the output of an RNN at a single time
step, identifying each of its components with the statistics of the distribution. A simple example is
that of a Bernoulli, i.e.

p(xt+1,k = 1|x1:t) = ηk(x1:t) (1)

where xt+1,k corresponds to the k’th component of the t+1’th time step of x with k = 1, . . . , ω and
t = 1, . . . , T . Each ηk(x1:t) is the k’th output of some RNN at time step t, constrained to lie in the
interval (0, 1). Learning such an RNN then boils down to minimising the negative log-likelihood of
the data with respect to the parameters of the network.

This framework gives practitioners a powerful tool to model rich probability distributions over se-
quences. A common simplification is a naı̈ve Bayes assumption that the individual components

1

ar
X

iv
:1

41
1.

76
10

v3
 [

st
at

.M
L

]
 5

 M
ar

 2
01

5

Under review as a conference paper at ICLR 2015

factorise:

p(xt+1|x1:t) =
∏
k

p(xt+1,k|x1:t).

While sufficient for many applications, reintroduction of dependency among the components of xt
leaves room for improvement. This is especially true for sequences over spaces which are high di-
mensional and tightly coupled. The approach taken by Graves (2013) is to use a mixture distribution
for p(xt|x1:t−1). Arguably powerful enough to model any dependency between the components of
xt, a drawback is that the number of parameters scales at least linearly with the number of chosen
mixture components.

Models based on restricted Boltzmann machines and variations (Boulanger-Lewandowski et al.,
2012; 2013; Sutskever et al., 2008) provide a solution to this as well, yet come with tighter restric-
tions on the assumptions that can be made. E.g. RBMs are restricted to model data using posteriors
from the exponential family (Welling et al., 2004), make use of an intractable objective function and
require costly MCMC steps for learning and sampling.

In this work, we propose to consider adding latent variables similar to Tang & Salakhutdinov (2013)
to the network. Using stochastic gradient variational Bayes (SGVB) (Rezende et al., 2014; Kingma
& Welling, 2013) as an estimator, we train RNNs to model high dimensional sequences.

2 PRELIMINARIES

In this section we will recap the basis of our method. We will first describe the used model fam-
ily, that of recurrent neural networks and then the estimator, stochastic gradient variational Bayes
(SGVB).

2.1 RECURRENT NEURAL NETWORKS

Given an input sequence x = (x1, . . . , xT), xt ∈ Rκ we compute the output sequence of a simple
Recurrent Neural Network (sRNN) y = (y1, . . . , yT), yt ∈ Rω via an intermediary hidden state
layer h = (h1, . . . , hT), ht ∈ Rγ by recursive evaluation of the following equations:

ht = fh(xtWin + ht−1Wrec + bhidden), , (2)
yt = fy(htWout + bout). (3)

The set of adaptable parameters is given by θ = {Win,Wrec,Wout,bhidden,bout}. fh and fy are
transfer functions introducing nonlinearity into the computation.

Adaptation of the network’s behaviour can be done by optimising a loss function with respect to
the network’s parameters with gradient-based schemes. Consider a data set of finite size, i.e. D =

{(x(i)
1:T)}Ii=1 on which the loss operates. In a setting as in Equation (1) a reasonable choice is the

negative log-likelihood given by LNLL(θ) = −
∑I
i=1

∑T
t=1 log p(xt|x1:t−1).

2.2 STOCHASTIC GRADIENT VARIATIONAL BAYES

SGVB was introduced independently by Rezende et al. (2014) and Kingma & Welling (2013). For
this paper, we will review the method briefly in order to introduce notation. We are interested in
modelling the data distribution p(x) with the help of unobserved latent variable z represented as a
directed graphical model, i.e. p(x) =

∫
p(x|z)p(z)dz. The integral is in general intractable, which

is why we will use a variational upper bound on the negative log-likelihood for learning.

− log p(x) = − log

∫
p(x|z)p(z)dz

= − log

∫
q(z|x)
q(z|x)

p(x|z)p(z)dz

≤ KL(q(z|x)||p(z))− Ez∼q(z|x)[log p(x|z)] =: L.

where KL(q||p) denotes the Kullback-Leibler divergence of p from q. In this case, we call q the
recognition model since it allows for fast approximate inference of the latent variables z given the

2

Under review as a conference paper at ICLR 2015

observed variables x. Note that q is a variational approximation of p(z|x), which is the inverse of
the generating model1 p(x|z) that cannot be found in general.

Both the recognition and the generating model can be chosen arbitrarily in their computational form
with the possibility to represent probability distributions as outputs and stochastic training being
the only requirements. In order to minimise the upper bound of the negative log-likelihood L with
numerical means, it is convenient to choose parametric models. In that case we write p(x|z, θg)
and q(z|x, θr) to make the dependency on the respective parameter sets explicit. Learning good
parameters can then be done by performing stochastic optimization of L with respect to both θr and
θg , where the expectation term is approximated by single draws from q in each training step.

Designing a model is then done by the following steps: (1) Choice of a prior p(z) over the latent
variables. (2) Choice of a recognition model q(z|x, θr). The Kullback-Leibler divergence between
the prior and the recognition model has to be tractable and efficient to compute. (3) Choice of a
generating model p(x|z, θg), which is often given by the type of data under investigation.

An important question is that of the representation capabilities of such a model. It turns out that if the
distribution p(x|z) is a universal function approximator, so is the overall model. An argument for the
one-dimensional case is as follows. Assume random variables x and z with respective distribution
functions Fx and Fz . According to the inverse transform technique theorem (Grimmett & Stirzaker,
1992), u = F−1x (x) will be uniformly distributed over the interval [0, 1] and so will be u′ = F−1z (z).
Equating gives F−1z (z) = F−1x (x) ⇒ Fx(F

−1
z (z)) = x. Therefore setting p(x|z) := δ(x = f(z))

with F = Fx ◦F−1z makes p(x) =
∫
z
p(x|z)p(z)dz. An extension to the multidimensional case can

be done by applying the above to the individual factors of a cascade decomposition and requiring x
and z to be of the same dimensionality. The burden is then on the learning algorithm to find a good
approximation for F .

3 METHODS

We propose to combine SGVB and RNNs by making use of an sRNN for both the recognition model
q(zt|x1:t−1) and the generating model p(xt|z1:t).

3.1 THE GENERATING MODEL

More specifically, the generating model is an sRNN where the latent variables form additional in-
puts:

ht = fh(xtW
g
in + ztW

′g
in + ht−1Wrec + bhidden) (4)

which replaces Eq. (2). We let yt from Eq. (3) represent the necessary statistics to fully determine
p(xt+1|x1:t).

Note that the model reduces to an sRNN as soon as we remove any latent variables, e.g. by setting
W′g

in = 0. Hence, such a model generalises sRNNs.

The only quantities bearing uncertainty in the calculation of h1:T are the latent variables z1:T , as
x1:T stems from the data set and for all t, ht is a deterministic function of x1:t and z1:t. The resulting
factorisation of the data likelihood of a single sequence p(x1:T) is then

p(x1:T) =

T−1∏
t=0

p(xt+1|x1:t)

=

∫
z1:T

p(z1:T)

T−1∏
t=0

p(xt+1|x1:t, z1:t,���zt+1:T)dz1:T

=

∫
z1:T

p(z1:T)

T−1∏
t=0

∫
ht

p(xt+1|x1:t, z1:t, ht)p(ht|x1:t, z1:t)dhtdz1:T ,

1We use the non standard term “generating model” for p(x|z) to distinguish it more clearly from the gener-
ative model p(x).

3

Under review as a conference paper at ICLR 2015

zt zt+1 zt+2

ht ht+1 ht+2.

xt xt+1 xt+2

Figure 1: Graphical model corresponding to the factorisation given in Eq. (5). The hidden states ht
are shown as diamonds to stress that they are no source of stochasticity. Despite of this, marginalis-
ing out z1:T makes h1:T stochastic.

where we have made use of the fact that xt+1 is independent of zt+1:T . Since ht is a deterministic
function of x1:t and z1:t, we note that p(ht|x1:t, z1:t) follows a Dirac distribution with its mode
given by Eq. (4). Thus, the integral over the hidden states is replaced by a single point; we make the
dependency of ht on both z1:t and x1:t explicit.

p(x1:T) =

∫
z1:T

p(z1:T)

T−1∏
t=0

p(xt+1|ht(x1:t, z1:t))dz1:T . (5)

The corresponding graphical model is shown in Figure 3.1. Even though the determinism of ht
might seem restrictive at first, we will argue that it is not. Let h1:T be the sequence of hidden layer
activations as given by Eq. (4). This sequence is deterministic given x1:T and z1:T and consequently,
p(h1:T |x1:T , z1:T) will follow a Dirac distribution. Marginalising out z1:T will however lead to a
universal approximator of probability distributions over sequences, analoguously to the argument
given in Section 2.2.

An additional consequence is, that we can restrict ourselves to prior distributions over the latent
variables that factorise over time steps, i.e. p(z1:T) =

∏
t p(zt). This is much easier to handle in

practice, as calculating necessary quantities such as the KL-divergence can be done independently
over all time steps and components of zt.

Despite of this, the distribution over h1:T will be a Markov chain and can exhibit stochastic be-
haviour, if necessary for modelling the data distribution.

3.2 VARIATIONAL INFERENCE FOR LATENT STATE SEQUENCES

The derivation of the training criterion is done by obtaining a variational upper bound on the negative
log-likelihood via Jensen’s inequality, where we use a variational approximation q(z1:T |x1:T) ≈
p(z1:T |x1:T).

− log p(x1:T) = − log

∫
z1:T

q(z1:T |x1:T)

q(z1:T |x1:T)
p(z1:T)

T−1∏
t=0

p(xt+1|ht(x1:t, z1:t))dz1:T

≤ KL(q(z1:T |x1:T)|p(z1:T))− Ez1:T∼q(z1:T |x1:T)[

T−1∑
t=0

log p(xt|ht−1, z1:t)] (6)

:= LSTORN

In this work, we restrict ourselves to a standard Normal prior2 of the form

p(z1:T) =
∏
t,k

N (zt,k|0, 1),

2In a preliminary report, we proposed the use of a Wiener process for a prior. However, the presented results
were invalid due to implementation errors and the paper has been withdrawn.

4

Under review as a conference paper at ICLR 2015

xt xt+1 xt+2

hr
t hr

t+1 hr
t+2

y
g
t

y
g
t+1 y

g
t+2

zt zt+1 zt+2

h
g
t

h
g
t+1 h

g
t+2

y
g
t

y
g
t+1 y

g
t+2

.

.

Figure 2: Diagram of the computational dependencies of STORNs. Each node of the graph corre-
sponds to a vectorial quantity. The different types of nodes shown are data (magenta), the recognition
model (cyan), samples (green) and the generating model (teal). Note that the outputs of the recog-
nition model yrt depict the statistics of q(zt|x1:t), from which the sample zt (green) is drawn. The
output of the generating model, ygt is used to represent p(xt+1|x1:t). The red arrow expresses that
this prediction is used to evaluate the loss, i.e. the negative log-likelihood.

where zt,k is the value of the k’th latent sequence at time step t.

The recognition model q will in this case be parameterised by a single mean µt,k and variance
σ2
t,k for each time step and latent sequence. Both will be represented by the output of a recurrent

net, which thus has 2ω outputs of which the first ω (representing the mean) will be unconstrained,
while the second ω (representing the variance) need to be strictly positive. Given the output y1:T =
fr(x1:T) of the recognition RNN fr, we set

µt,k = yt,k,

σ2
t,k = y2t,k+ω.

Note that the square ensures positiveness.

Going along with the reparametrisation trick of Kingma & Welling (2013), we will sample from
a standard Normal at each time step, i.e. εt,k ∼ N (0, 1) and use it to sample from q via zt,k =
µt,k+σt,kεt,k. Given the complete sample sequence z1:T we calculate the two terms of Equation (6).
The KL-divergence can be readily computed, while we need to pass z1:T through the generating
model fg which gives − log p(x1:T |z1:T). The computational flow is illustrated in Figure 3.2.

3.3 COMPARISON TO RNNS

An important question is whether the proposed model offers any theoretical improvements over
RNNs with no latent variables. The approximation capabilities (with respect to probability distri-
butions) of RNNs result from the choice of likelihood function, i.e. the way the density of the
observations at time step t is determined by the outputs of the network, yt. See Eq. (1). We have
argued in Section 1 that a naı̈ve Bayes assumption reduces the approximation capabilities. One way
to circumvent this is to use mixture distributions (Graves, 2013). The number of parameters of the
latter scales poorly, though: linear in the number of modes, hidden units in the last layer and output
dimensions.

Both approaches also share the drawback that the stochasticity entering the computation is not rep-
resented in the hidden layers: drawing a sample is determined by a random process invisible to the
network.

STORN overcomes both of these issues. Introducing an additional mode merely requires an addi-
tional change of curvature in the approximation of F (compare Section 2.2). This can be obtained by
additional hidden units, for which the number of parameters scales linearly in the number of hidden

5

Under review as a conference paper at ICLR 2015

Table 1: Results on the midi data sets. All numbers are average negative log-likelihoods on the test
set, where “FD-RNN” represents the work from Bayer et al. (2013a); “sRNN” and “RNN-NADE”
results are from Bengio et al. (2012) while “Deep RNN“ shows the best results from Pascanu et al.
(2013). The results of our work are shown as “STORN“ and have been obtained by means of the
importance sampler described in Rezende et al. (2014).

Data set STORN FD-RNN sRNN RNN-NADE Deep RNN
Piano-midi.de 7.13 7.39 7.58 7.05 –
Nottingham 2.85 3.09 3.43 2.31 2.95
MuseData 6.16 6.75 6.99 5.60 6.59
JSBChorales 6.91 8.01 8.58 5.19 7.92

units in the incoming and outgoing layer. Further, the stochasticity in the network is stemming from
z of which the hidden layer is a function.

4 EXPERIMENTS

For evaluation we trained the proposed model on a set of midi music, which was used previously
(Bengio et al., 2012; Pascanu et al., 2013; Bayer et al., 2013a; Boulanger-Lewandowski et al., 2012)
to evaluate RNNs. We also investigated modelling human motion in the form of motion capture
data (Boulanger-Lewandowski et al., 2012; Sutskever et al., 2008; Taylor et al., 2006). We employ
Fast Dropout Recurrent Networks (FD-RNNs) (Bayer et al., 2013a) for both the recognition and
the generating model. While we determine the dropout rates for the generating model via model
selection on a validation set, we include them into the parameter set for the recognition model. In
a manner similar to Bayer et al. (2013b), we exploit fast dropout’s natural inclusion of variance as
the variance for the recognition model, i.e. σ2

t,k. We used Adadelta (Zeiler, 2012) enhanced with
Nesterov momentum (Sutskever et al., 2013) for optimisation.

4.1 POLYPHONIC MUSIC GENERATION

All experiments were done by performing a random search (Bergstra & Bengio, 2012) over the
hyper parameters, where 128 runs were performed for each data set. Both the recognition and the
generating model used 300 hidden units with the logistic sigmoid as the transfer function. We report
the estimated negative log-likelihood (obtained via the optimiser proposed in (Rezende et al., 2014))
on the test set of the parameters which yielded the best bound on the validation set.

As expected, STORN improves over the models assuming a factorised output distribution (FD-
RNN, sRNN, Deep RNN) in all cases. Still, RNN-NADE has a competitive edge. The reasons for
this remain unclear from the results alone, but the stochastic training and resulting noisy gradients
are a viable hypothesis, since RNN-NADE does not suffer from those.

4.2 MOTION CAPTURE DATA

The motion capture data set (Hsu et al., 2005; Taylor et al., 2006) is a sequence of kinematic quan-
tities obtained from a human body during walking. It consists of 3128 time steps of 49 angular
quantities each. The experimental protocol of previous studies of this data set is to report the mean
squared error on the training set , which we comply with. 3

For motion capture data, we chose a Gaussian likelihood with a fixed standard deviation for the
generating model. The recognition model was chosen to be a bidirectional RNN. While the stan-
dard deviation was fixed to 1 during training, we performed a binary search for a better value after
training; the resulting estimate of the negative log-likelihood on the validation set was then used for
model selection.

3The use of the MSE on the trainig set is debatable for this task. First, there is the danger of overfitting
the training set. Second, the metric only captures a single moment of the residual distribution. We go forward
with this protocol nonetheless to make our results comparable to previous works. Additionally, we report the
negative log-likelihood, which is the right metric for the task.

6

Under review as a conference paper at ICLR 2015

noisy

imputed

truth

Figure 3: Illustration of missing value imputation on the motion capture data set. We show the
first 48 of the 49 channels of a random sample, where time steps 30 to 40 were initialised with
random noise. Subsequently, a maximum a posteriori point estimate of the latent variables was used
to reconstruct the missing parts of the signals.

The estimated negative log-likelihood of the data was 15.99. Other models trained on this data
set, namely the RNN-RBM, RTRBM and cRBM do not offer a tractable way of estimating the
log-likelihood of the data, which is why there is no direct mean of comparison respecting the
probabilistic nature of the models. In the case of the former two, the mean squared prediction
error is reported instead, which is 20.1 and 16.2 respectively. Our method achieved an average
MSE of 4.94, which is substantially less than previously reported results.For additional means of
comparison, we performed approximate missing value imputation of motion capture data. We
picked random sequences of length 60 and replaced all of the 49 channels from time steps 30
to 40 with standard normal noise. We then performed a maximum a posteriori point selection of
the recognition model, i.e. argmaxẑ1:T

q(ẑ1:T |x1:T), from which we reconstructed the output via
argmaxx̂30:40

log p(x1:T |ẑ1:T). Note that this method is different from the one proposed in (Rezende
et al., 2014), where an iterative scheme is used. We also experimented with that method, but did not
find it to yield substantially better results. The results of the imputations are shown in Figure 3.

To demonstrate the generative capabilities of the method, we drew 50 samples from the model after
initialising it with a stimulus prefix. The stimulus had a length of 20, after which we ran the model
in “generating mode” for another 80 time steps. This was done by feeding the mean of the model’s
output at time step t into the generating model at time step t+1. Additionally, we drew z20:80 from
the prior. The results are visualised in Figure 4.

5 DISCUSSION AND FUTURE WORK

We have presented a model class of stochastic RNNs that can be trained with a recently proposed
estimator, SGVB. The resulting model fulfills the expectation to greatly improve over the perfor-
mance of sRNNs erroneously assuming a factorisation of output variables. An important take away
message of this work is that the performance of RNNs can greatly benefit from more sophisticated
methods that greatly improve the representative capabilities of the model.

While not shown in this work, STORNs can be readily extended to feature computationally more
powerful architectures such as LSTM or deep transition operators (Hochreiter & Schmidhuber,
1997; Pascanu et al., 2013).

7

Under review as a conference paper at ICLR 2015

stimulus

sample

Figure 4: Samples from the model trained on motion capture data after providing a stimulus prefix
sequence of 20 time steps. The uncertainty of the learned distribution is visible by the diversity of
the samples; nevertheless, the distribution is rather unimodal.

Still, an apparent weakness seems to be the stochastic objective function. Thankfully, research in
optimisation of stochastic objective functions has far from halted and we believe STORN to benefit
from any advances in that area.

6 ACKNOWLEDGEMENTS

Part of this work has been supported by the TACMAN project, EC Grant agreement no. 610967,
within the FP7 framework programme.

REFERENCES

Bayer, Justin, Osendorfer, Christian, Korhammer, Daniela, Chen, Nutan, Urban, Sebastian, and
van der Smagt, Patrick. On fast dropout and its applicability to recurrent networks. arXiv preprint
arXiv:1311.0701, 2013a.

Bayer, Justin, Osendorfer, Christian, Urban, Sebastian, et al. Training neural networks with implicit
variance. In Proceedings of the 20th International Conference on Neural Information Processing
, ICONIP-2013, 2013b.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. Advances in optimizing recurrent net-
works. arXiv preprint arXiv:1212.0901, 2012.

Bergstra, James and Bengio, Yoshua. Random search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13:281–305, 2012.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music generation and transcription. arXiv
preprint arXiv:1206.6392, 2012.

Boulanger-Lewandowski, Nicolas, Bengio, Yoshua, and Vincent, Pascal. High-dimensional se-
quence transduction. In ICASSP, 2013.

8

Under review as a conference paper at ICLR 2015

Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar, Bougares, Fethi, Schwenk, Holger,
and Bengio, Yoshua. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Graves, Alex. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Graves, Alex, Fernández, Santiago, Liwicki, Marcus, Bunke, Horst, and Schmidhuber, Jurgen. Un-
constrained online handwriting recognition with recurrent neural networks. Advances in Neural
Information Processing Systems, 20:1–8, 2008.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Geoffrey. Speech recognition with deep re-
current neural networks. arXiv preprint arXiv:1303.5778, 2013.

Grimmett, Geoffrey and Stirzaker, David. Probability and random processes, volume 2. Oxford
Univ Press, 1992.

Hammer, Barbara. On the approximation capability of recurrent neural networks. Neurocomputing,
31(1):107–123, 2000.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hsu, Eugene, Pulli, Kari, and Popović, Jovan. Style translation for human motion. ACM Transac-
tions on Graphics (TOG), 24(3):1082–1089, 2005.

Kingma, Diederik P and Welling, Max. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Martens, J. and Sutskever, I. Learning recurrent neural networks with hessian-free optimization.
Proc. 28th Int. Conf. on Machine Learning, 2011.

Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, and Bengio, Yoshua. How to construct deep
recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic back-propagation and
variational inference in deep latent gaussian models. arXiv preprint arXiv:1401.4082, 2014.

Siegelmann, Hava T and Sontag, Eduardo D. Turing computability with neural nets. Applied Math-
ematics Letters, 4(6):77–80, 1991.

Sutskever, I., Hinton, G., and Taylor, G. The recurrent temporal restricted boltzmann machine.
Advances in Neural Information Processing Systems, 21, 2008.

Sutskever, Ilya, Martens, James, Dahl, George, and Hinton, Geoffrey. On the importance of initial-
ization and momentum in deep learning. 2013.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning with neural net-
works. arXiv preprint arXiv:1409.3215, 2014.

Tang, Yichuan and Salakhutdinov, Ruslan. A new learning algorithm for stochastic feedforward
neural nets. 2013.

Taylor, Graham W, Hinton, Geoffrey E, and Roweis, Sam T. Modeling human motion using binary
latent variables. In Advances in neural information processing systems, pp. 1345–1352, 2006.

Welling, Max, Rosen-Zvi, Michal, and Hinton, Geoffrey E. Exponential family harmoniums with
an application to information retrieval. In Advances in neural information processing systems, pp.
1481–1488, 2004.

Zeiler, Matthew D. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

9

	1 Introduction
	2 Preliminaries
	2.1 Recurrent Neural Networks
	2.2 Stochastic Gradient Variational Bayes

	3 Methods
	3.1 The Generating Model
	3.2 Variational Inference for Latent State Sequences
	3.3 Comparison to RNN!s

	4 Experiments
	4.1 Polyphonic Music Generation
	4.2 Motion Capture Data

	5 Discussion and Future Work
	6 Acknowledgements

